Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 12: 669206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566752

RESUMO

Background: Holistic processing is defined as the perceptual integration of facial features, and plays an important role in face recognition. While researchers recognize the crucial role played by holistic processing in face perception, a complete delineation of the underlying mechanisms is impending. Very few studies have examined the effects of perceptual discrimination and spatial perception on holistic processing. Hence, the present study aimed to examine the influence of perceptual discrimination and spatial perception on face recognition. Methods: We conducted two experiments by manipulating the perceptual discriminability of the target (the top-half faces) and non-target face (the bottom-half faces) parts in the composite-face task and examined how perceptual discriminability may affect holistic processing of faces. Results: The results of Experiment 1 illustrated that holistic processing was modulated by the perceptual discriminability of the face. Furthermore, differential patterns of perceptual discriminability with the target and non-target parts suggested that different mechanisms may be responsible for the influence of target and non-target parts on face perception. The results of Experiment 2 illustrated that holistic processing was modulated by spatial distance between two faces, implicating that feature-by-feature strategy might decrease the magnitude of holistic processing. Conclusion: The results of the present study suggest that holistic processing may lead to augmented perception effect exaggerating the differences between the two faces and may also be affected by the feature-by-feature strategy.

2.
Front Hum Neurosci ; 14: 269, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848662

RESUMO

For more than two decades, a network of face-selective brain regions has been identified as the core system for face processing, including occipital face area (OFA), fusiform face area (FFA), and posterior region of superior temporal sulcus (pSTS). Moreover, recent studies have suggested that the ventral route of face processing and memory should end at the anterior temporal lobes (i.e., vATLs), which may play an important role bridging face perception and face memory. It is not entirely clear, however, the extent to which neural activities in these face-selective regions can effectively predict behavioral performance on tasks that are frequently used to investigate face processing and face memory test that requires recognition beyond variation in pose and lighting, especially when non-Caucasian East Asian faces are involved. To address these questions, we first identified during a functional scan the core face network by asking participants to perform a one-back task, while viewing either static images or dynamic videos. Dynamic localizers were effective in identifying regions of interest (ROIs) in the core face-processing system. We then correlated the brain activities of core ROIs with performances on face-processing tasks (component, configural, and composite) and face memory test (Taiwanese Face Memory Test, TFMT) and found evidence for limited predictability. We next adopted an multi-voxel pattern analysis (MVPA) approach to further explore the predictability of face-selective brain regions on TFMT performance and found evidence suggesting that a basic visual processing area such as calcarine and an area for structural face processing such as OFA may play an even greater role in memorizing faces. Implications regarding how differences in processing demands between behavioral and neuroimaging tasks and cultural specificity in face-processing and memory strategies among participants may have contributed to the findings reported here are discussed.

3.
Front Psychol ; 7: 1506, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27757095

RESUMO

The composite face task is one of the most popular research paradigms for measuring holistic processing of upright faces. The exact mechanism underlying holistic processing remains elusive and controversial, and some studies have suggested that holistic processing may not be evenly distributed, in that the top-half of a face might induce stronger holistic processing than its bottom-half counterpart. In two experiments, we further examined the possibility of asymmetric holistic processing. Prior to Experiment 1, we confirmed that perceptual discriminability was equated between top and bottom face halves; we found no differences in performance between top and bottom face halves when they were presented individually. Then, in Experiment 1, using the composite face task with the complete design to reduce response bias, we failed to obtain evidence that would support the notion of asymmetric holistic processing between top and bottom face halves. To further reduce performance variability and to remove lingering holistic effects observed in the misaligned condition in Experiment 1, we doubled the number of trials and increased misalignment between top and bottom face halves to make misalignment more salient in Experiment 2. Even with these additional manipulations, we were unable to find evidence indicative of asymmetric holistic processing. Taken together, these findings suggest that holistic processing is distributed homogenously within an upright face.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...